ব্যাখ্যা খুব সীমিত সময়ের জন্য খুব বড় মানের ঘাত বল প্রযুক্ত হয়। অনেক সময় এ ঘাত বলের মান এত বড় হয় যে এর ক্রিয়াকাল খুব কম হলেও এর প্রভাব দৃষ্টিগ্রাহ্য হয়। যে স্বল্প সময়ব্যাপী ঘাত বল প্রযুক্ত হয় সেই সময় অন্যান্য বলের প্রভাব উপেক্ষা করা হয়।
উদাহরণ : ধরা যাক, একটি র্যাকেট কোনো টেনিস বলকে আঘাত করল। র্যাকেট কর্তৃক প্রযুক্ত বল F টেনিস বলটির ভরবেগ পরিবর্তন করে। যে সময় ধরে টেনিস বলটি র্যাকেটটির সংস্পর্শে থাকে সে সময়ে র্যাকেট কর্তৃক প্রযুক্ত বল টেনিস বলটির উপর ক্রিয়াশীল অন্যান্য বলের তুলনায় অনেক বড় হয়। র্যাকেট কর্তৃক প্রযুক্ত এরূপ বল ঘাত বল।
সংজ্ঞা কোনো বল ও বলের ক্রিয়াকালের গুণফলকে ঐ বলের ঘাত বলে।
ব্যাখ্যা : কোনো বল যদি কোনো বস্তুর উপর সময় ধরে ক্রিয়া করে, তাহলে বলের ঘাত হবে,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>J</mi><mo>→</mo></mover><mo>=</mo><mover accent='true'><mi>F</mi><mo>→</mo></mover><mo>△</mo><mi>t</mi><mo>=</mo><mi>m</mi><mover accent='true'><mi>a</mi><mo>→</mo></mover><mo>△</mo><mi>t</mi><mo>=</mo><mi>m</mi><mfrac><mrow><mo>△</mo><mover accent='true'><mi>v</mi><mo>→</mo></mover></mrow><mrow><mo>△</mo><mi>t</mi></mrow></mfrac><mo>△</mo><mi>t</mi><mspace linebreak="newline"/><mo>=</mo><mi>m</mi><mo mathvariant="italic">△</mo><mover accent='true'><mi>v</mi><mo mathvariant="italic">→</mo></mover><mo>=</mo><mo>(</mo><mover accent='true'><mrow><msub><mi>v</mi><mi>f</mi></msub></mrow><mo>→</mo></mover><mo>−</mo><mover accent='true'><mrow><msub><mi>v</mi><mi>i</mi></msub></mrow><mo>→</mo></mover><mo>)</mo><mspace linebreak="newline"/><mover accent='true'><mi>J</mi><mo>→</mo></mover><mo>=</mo><mi>m</mi><mover accent='true'><mrow><msub><mi>v</mi><mi>f</mi></msub></mrow><mo>→</mo></mover><mo>−</mo><mi>m</mi><mover accent='true'><mrow><msub><mi>v</mi><mi>i</mi></msub></mrow><mo>→</mo></mover><mo>=</mo><mover accent='true'><mrow><msub><mi>P</mi><mi>r</mi></msub></mrow><mo>→</mo></mover><mo>−</mo><mover accent='true'><mrow><msub><mi>P</mi><mi>i</mi></msub></mrow><mo>→</mo></mover><mo>=</mo><mo>△</mo><mover accent='true'><mi>P</mi><mo>→</mo></mover></math>
সুতরাং বলের ঘাত হলো বস্তুর ভরবেগের পরিবর্তন সমান।
:- =
আমাদের দৈনন্দিন জীবনে ঘাতবল ও বলের ঘাতের প্রভাব অপরিসীম। বস্তুকে ধীরগতি করতে হলে অর্থাৎ এর বেগ কমাতে হলে বলের ঘাতের প্রয়োগ হয়। এক্ষেত্রে বলের ঘাত গতির বিপরীত দিকে ক্রিয়া করে। ক্রিকেট খেলায় যখন একজন ফিল্ডার ক্যাচ ধরতে চান তখন গতিশীল বলকে থামিয়ে অর্থাৎ বলটির ভরবেগ শূন্যে নামিয়ে এনে ক্যাচ ধরতে হয়। এতে বলের ঘাতের প্রয়োজন হয় এবং এজন্য একটি বিপরীতমুখী বলকে কিছুক্ষণের জন্য ক্রিয়া করতে হয়। এখন ফিল্ডার যদি তার ঘাত স্থির রাখেন তাহলে ক্রিকেট বলটি তখনই থেমে যাবে। এতে যে সময় ধরে ফিল্ডারের হাতের উপর বল ক্রিয়া করে সেই সময় খুব ক্ষুদ্র হয়। ফলে বলের মান হতে হয় খুবই বৃহৎ যে বল ফিল্ডারের হাতে তীব্র ব্যথা উৎপন্ন করে। এখন বল ধরার মুহূর্তে ফিল্ডার যদি হাতটকে পেছনের দিকে টেনে নেন, তাহলে বলের ক্রিয়াকাল বৃদ্ধি পায়। ফলে থামানোর জন্য প্রয়োজনীয় ঘাতের যোগানদার বলও কম হয় এবং ক্যাচটি ধরাও অনেক কম পীড়াদায়ক হয়।
একই কারণে আমরা দেখতে পাই একজন মুষ্ঠিযোদ্ধা প্রতিপক্ষের ঘুষির প্রভাব কমানোর জন্য তার মাথাকে পিছনের দিক সরিয়ে নেন। ক্রিকেট খেলায় ব্যাটসম্যানরা ও উইকেটকিপারও একই কারণে প্যাড ও গ্লাভস পরে মাঠ নামেন। প্যাড ও গ্লাভসে দ্রুতগতির ক্রিকেটবল আঘাত করলে প্যাড ও গ্লাভস কিছুটা থেতলে গিয়ে সংঘর্ষের সময়কাল বাড়িয়ে দেয় ফলে ঘাত বল হ্রাস পায় এবং বলের আঘাত কম পীড়াদায়ক হয়।
যেমন হাতুড়ি দিয়ে পেরেককে আঘাত করা বা ক্রিকেট খেলায় ব্যাট দিয়ে বলকে আঘাত করা। এখানে হাতুড়ি বা ব্যাট খুব অল্প সময়ের জন্য পেরেক বা বলের সংস্পর্শ থাকে কিন্তু খুব বড় মানের বলে আঘাত করে। সংঘর্ষে ঘাত বল ক্রিয়া করে। সংঘর্ষের মূল ধারণাটি হলো : সংঘর্ষে বস্তুগুলোর অথবা অন্তত একটি বস্তুর গতি হঠাৎ এমনভাবে পরিবর্তিত হবে যে আমরা “সংঘর্ষের পূর্ব" এবং "সংঘর্ষের পর "কে সুস্পষ্টভাবে আলাদা করতে পারি। সংঘর্ষে ভরবেগের নিত্যতা সূত্র খাটে অর্থাৎ সংঘর্ষের পূর্বের মোট ভরবেগ এবং সংঘর্ষের পরের মোট ভরবেগ একই থাকে। কিন্তু গতিশক্তি সংরক্ষিত থাকে কিনা তার উপর নির্ভর করে সংঘর্ষকে দুভাগে ভাগ করা হয়। স্থিতিস্থাপক সংঘর্ষ এবং অস্থিতিস্থাপক সংঘর্ষ। স্থিতিস্থাপক সংঘর্ষে ভরবেগের সাথে সাথে গতিশক্তিও সংরক্ষিত থাকে, অস্থিতিস্থাপক সংঘর্ষে ভরবেগ সংরক্ষিত হয়, কিন্তু গতিশক্তি সংরক্ষিত থাকে না।
দুটি বস্তুর মধ্যে সংঘর্ষ হলে যদি মোট গতি শক্তি সংরক্ষিত থাকে অর্থাৎ যদি বস্তুগুলোর মোট গতি শক্তির পরিবর্তন না হয় তাহলে তাকে স্থিতিস্থাপক সংঘর্ষ বলে। ধরা যাক, m1, ও m2 ভরের দুটি বস্তু একই সরলরেখা বরাবর চলছে। m2 এর বেগ m1 এর বেগের চেয়ে বেশি হলে চলতে চলতে কোনো এক সময় m2 ভরের বস্তুটি m1 ভরের বস্তুটিকে ধাক্কা দিবে অর্থাৎ বস্তুদ্বয় সংঘর্ষে লিপ্ত হবে।
m1 ও m2 ভরের দুটি বস্তুর সংঘর্ষের আগে বেগ যথাক্রমে vli ও v2i এবং সংঘর্ষের পরে যথাক্রমে বেগ vlf ও v2f হলে (চিত্র : ৪.২৮), ভরবেগের সংরক্ষণ সূত্র থেকে লেখা যায়,
(4.44) ও (4.45) সমীকরণকে যথাক্রমে লেখা যায়,
mi1(vlf - VIf) = m2 (v2f - v2i)….. (4.46)
এবং m1 (v2If - v2If) = m2 (v22f-v22i)… (4.47)
.(4.47) সমীকরণকে (4.46) সমীকরণ দিয়ে ভাগ করে আমরা পাই,
Vli + Vlf= V2f+ V2i
বা, Vli - V2i = V2f - VIf
(4.48) সমীকরণ থেকে দেখা যায় যে, সংঘর্ষের আগে বস্তু দুটি যে আপেক্ষিক বেগ নিয়ে কাছাকাছি আসে এবং সংঘর্ষের পর বস্তু দুটি যে আপেক্ষিক বেগ নিয়ে দূরে সরে যায় তার মান সমান।
(4.48) সমীকরণকে লেখা যায়,
V2f = Vli + VIf - V2i
(4.49) সমীকরণকে (4.46) সমীকরণে বসিয়ে আমরা পাই,
১. V1 ও V2 সমান হলে বস্তু দুটির মধ্যে কোনো সংঘর্ষ হবে না।
২. বস্তু দুটির ভর সমান হলে অর্থাৎ m1 = m2 হলে (4.50) ও (4.52) সমীকরণ থেকে পাওয়া যায়,
VIf=V2i এবং V2f = Vli... ... (4.53)
সুতরাং সমান ভরের দুটি বস্তুর মধ্যে সংঘর্ষ হলে একটি বস্তু অপরটির বেগ প্রাপ্ত হয় অর্থাৎ বস্তুদ্বয় বেগ বিনিময় করে।
৩. যদি সংঘর্ষের পূর্বে m1 ভরের বস্তু স্থির থাকে তাহলে (4.50 ) ও (4.52 ) সমীকরণ অনুসারে,
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>v</mi><mrow><mi>I</mi><mi>f</mi></mrow></msub><mo>=</mo><mfenced><mfrac><mrow><mn>2</mn><msub><mi>m</mi><mn>2</mn></msub></mrow><mrow><msub><mi>m</mi><mn>1</mn></msub><mo>+</mo><msub><mi>m</mi><mn>2</mn></msub></mrow></mfrac></mfenced><msub><mi>v</mi><mrow><mn>2</mn><mi>i</mi></mrow></msub></math> এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>v</mi><mrow><mn>2</mn><mi>f</mi></mrow></msub><mo>=</mo><mfenced><mfrac><mrow><msub><mi>m</mi><mn>2</mn></msub><mo>−</mo><msub><mi>m</mi><mn>1</mn></msub></mrow><mrow><msub><mi>m</mi><mn>1</mn></msub><mo>+</mo><msub><mi>m</mi><mn>2</mn></msub></mrow></mfrac></mfenced><msub><mi>v</mi><mrow><mn>2</mn><mi>i</mi></mrow></msub></math>
এখন যদি m1 = m2 হয় তাহলে VIf= V2i এবং v2f = 0... .. (4.55)
অর্থাৎ দুটি সমান ভরের বস্তুর একটি যদি স্থির থাকে তাহলে সংঘর্ষের ফলে গতিশীল বস্তুটি থেমে যাবে এবং থেমে থাকা বস্তুটি গতিশীল বস্তু যে বেগে আসছিল সেই বেগ নিয়ে চলতে থাকবে।
কোনো মসৃণ তলে থেমে থাকা একটি মার্বেলকে যদি পেছন থেকে অন্য মার্বেল দিয়ে অনুভূমিকভাবে আঘাত করা যায়। তাহলে থেমে থাকা মার্বেলটি আগত মার্বেলের বেগ নিয়ে চলতে থাকে এবং আগত মার্বেলটি থেমে যায়।
৪. যদি স্থির বস্তুর ভর গতিশীল বস্তুর তুলনায় অনেকগুণ বেশি হয় অর্থাৎ m1 >> m2 হয়, তাহলে (4.54) সমীকরণ থেকে আমরা পাই,
Vlf 0 এবং V2f = -V2i (4.56)
একটি বলকে যদি ভূ-পৃষ্ঠের কোনো অনুভূমিক তলে ফেলা হয় তাহলে বল ও পৃথিবীর মধ্যে সংঘর্ষ ঘটে। সংঘর্ষটি যদি স্থিতিস্থাপক হয় তাহলে বলটি একই বেগে বিপরীত দিকে ফিরে আসে এবং যে উচ্চতা থেকে ফেলা হয়েছিল সেই উচ্চতায় ওঠে। ক্যারামবোর্ডে স্ট্রাইকার দিয়ে বোর্ডের বিপরীত পৃষ্ঠকে সোজাসুজি আঘাত করলে স্ট্রাইকারটি প্রায় একই বেগে বিপরীত দিকে ফিরে আসে। একই কারণে দেয়ালে কোনো বল অনুভূমিকভাবে ধাক্কা খেলে দেয়ালটির ভর যেহেতু অনেক অনেক বেশি এবং স্থির তাই বলটি একই বেগে পিছনের দিকে সরে আসে।
৫. স্থির বস্তুর ভর যদি গতিশীল বস্তুর ভরের তুলনায় নগণ্য হয়, অর্থাৎ m1 << m2 হয় তাহলে (4.54) সমীকরণ থেকে দেখা যায়,
Vlf 2v2ই এবং V2f v2……. .. . (4.57)
অর্থাৎ কোনো ভারী বস্তু থেমে থাকা হালকা বস্তুকে আঘাত করলে ভারী বস্তুর বেগ কার্যত অপরিবর্তিত থাকে, কিন্তু হালকা বস্তু ভারী বস্তুটির প্রায় দ্বিগুণ বেগ নিয়ে চলতে থাকে।
মসৃণ তলে থেমে থাকা একটি মার্বেলকে ক্রিকেট বল দিয়ে আঘাত করলে ক্রিকেট বলের বেগের কোনো পরিবর্তন হবে না কিন্তু মার্বেলটি অতিদ্রুত বেগে ছিটকে যাবে।
দুটি বস্তুর মধ্যে ধাক্কা লাগলে বা সংঘর্ষ হলে যদি বস্তুগুলোর মোট গতিশক্তি সংরক্ষিত না হয় অর্থাৎ সংঘর্ষের পূর্বের ও পরের গতিশক্তি যদি সমান না হয় তাহলে সেই সংঘর্ষকে অস্থিতিস্থাপক সংঘর্ষ বলে। সংঘর্ষের পূর্বের গতিশক্তির চেয়ে পরের গতিশক্তি কম বা বেশি হতে পারে। যদি কম হয় তাহলে দুই গতিশক্তির পার্থক্যটুকু তাপ হিসেবে উদ্ভূত হয় বা সংঘর্ষের ফলে বিকৃত বস্তুর বিভব শক্তি হিসেবে আবির্ভূত হয়। আবার যদি সংঘর্ষের পরের গতিশক্তি পূর্বের গতিশক্তির চেয়ে বেশি হয় তাহলে সংঘর্ষের ফলে বিভব শক্তি যুক্ত হবে। তবে উভয় ক্ষেত্রেই ভরবেগ ও মোট শক্তি সংরক্ষিত হয়।
m1 ও m2 ভরের দুটি বস্তু vli ও v2i বেগে চলে পরস্পরের সাথে সংঘর্ষের ফলে পরস্পরের সাথে যুক্ত থেকে vf বেগ নিয়ে চলতে থাকে তাহলে সংঘর্ষটি হবে একটি অস্থিতিস্থাপক সংঘর্ষ। এক্ষেত্রে,
m1vli + m2v2i = (m1 + m2 ) vf
অস্থিতিস্থাপক সংঘর্ষ হল এমন একটি সংঘর্ষ যেখানে দুটি বস্তু সংঘর্ষের পর একে অপরের সাথে আটকে যায় অথবা একত্রিত হয়ে যায়। এই ধরনের সংঘর্ষে গতিশক্তি সংরক্ষিত থাকে না। অর্থাৎ, সংঘর্ষের আগের মোট গতিশক্তি এবং সংঘর্ষের পরের মোট গতিশক্তি সমান হয় না। সংঘর্ষের ফলে কিছু গতিশক্তি অন্য শক্তিতে রূপান্তরিত হয়, যেমন তাপ, শব্দ বা বিকৃতি।
বৈশিষ্ট্য | স্থিতিস্থাপক সংঘর্ষ | অস্থিতিস্থাপক সংঘর্ষ |
---|---|---|
গতিশক্তি | সংরক্ষিত থাকে | সংরক্ষিত হয় না |
বস্তুগুলি | সংঘর্ষের পর আলাদা হয়ে যায় | সংঘর্ষের পর আটকে যায় |
উদাহরণ | দুটি বিলিয়ার্ড বলের সংঘর্ষ | একটি গাড়ির সঙ্গে একটি গাছের সংঘর্ষ |
একটি খেলনা মোটরকে মাটির ওপর গড়িয়ে দিলে যতদূর যাবে সিমেন্টের মেঝের ওপর তার থেকে বেশি দূর যাবে। আবার মসৃণ মেঝেতে পুরানো জুতা পায়ে চলতে যত সুবিধা নতুন জুতা পায়ে তত নয়। এর কারণ কী? কোনো বস্তু আপাতদৃষ্টিতে যতই মসৃণ মনে হোক না কেন কোনো বস্তুই কিন্তু সম্পূর্ণ মসৃণ হতে পারে না। সব থেকে মসৃণ বস্তুর তলও খানিকটা উঁচু নিচু। ফলে যখন কোনো বস্তু অপর বস্তুর ওপর দিয়ে চলার চেষ্টা করে তখন বস্তু দুটির উঁচু নিচু খাঁজগুলো পরস্পরের সাথে আটকে যায়, ফলে গতি বাধাপ্রাপ্ত হয় বা ঘর্ষণের উৎপত্তি হয়। আবার বস্তুদ্বয়ের তল যে স্থানে স্পর্শ করে থাকে সে স্থানের অণুগুলো পরস্পরকে আকর্ষণ করে, এর ফলেও তলদ্বয়ের মধ্যবর্তী গতি বাধাপ্রাপ্ত হয়। যে বল দ্বারা গতি বাধাপ্রাপ্ত হয় তাকে ঘর্ষণ বল বলে।
১। স্থিতি ঘর্ষণ (Static Friction),
২। গতীয় ঘর্ষণ বা বিসর্প-ঘর্ষণ (Kinetic Friction or Sliding Friction).
৩। আবর্ত ঘর্ষণ (Rolling Friction) এবং ৪। প্রবাহী ঘর্ষণ (Fluid Friction)।
ঘর্ষণ বল দুটি বস্তু পরস্পরের সংস্পর্শে থেকে যদি একের ওপর দিয়ে অপরটি চলতে চেষ্টা করে তাহলে বস্তুদ্বয়ের স্পর্শতলে এই গতির বিরুদ্ধে যে বল উৎপন্ন হয়, তাকে ঘর্ষণ বল বলে।
মনে করি, M একটি কাঠের ব্লক সমতল টেবিলের ওপর আছে (চিত্র ৪.২৯) । এই অবস্থায় ব্লকের ওজন W টেবিলের ওপর খাড়া নিচের দিকে ক্রিয়া করছে এবং নিউটনের তৃতীয় সূত্রানুসারে টেবিলও ব্লকের ওপর সমান ও বিপরীত প্রতিক্রিয়া R প্রয়োগ করবে। এই অবস্থায় R ও W পরস্পর সমান ও বিপরীতমুখী হওয়ায় উভয় উভয়কে নিষ্ক্রিয় (balance) করবে। ফলে ব্লকটি স্থির থাকবে এবং কোনো ঘর্ষণ বলও থাকবে না। এখন যদি ব্লকটার ওপর টেবিলের সমান্তরাল সামান্য বল F প্রয়োগ করা হয় তা হলেও দেখা যাবে যে ব্লকে গতির সঞ্চার হচ্ছে না। যদিও R ও W টেবিলের তলের সাথে লম্ব হওয়ায় এবং F-এর সমান্তরাল আর কোনো বল না থাকায় ব্লকে গতির সঞ্চার হওয়া উচিত ছিল। এখন F বলকে যদি আমরা ধীরে ধীরে বৃদ্ধি করতে থাকি তাহলে দেখা যাবে F-এর একটা নির্দিষ্ট মানের জন্য ব্লকটি গতিশীল হওয়ার উপক্রম হবে। এই নির্দিষ্ট মানের চেয়ে বেশি প্রয়োগ করলে ব্লকটিতে গতির সঞ্চার হবে। আমরা বলতে পারি যে, বল প্রয়োগেও ব্লকটি গতিশীল না হওয়ার কারণ ব্লক ও টেবিলের মধ্যবর্তী ঘর্ষণ বল, fn। এখন FR-এর মান যে সীমায় পৌঁছলে ব্লকে গতির সঞ্চার হওয়ার উপক্রম হবে সেই সীমায় বস্তুদ্বয়ের মধ্যবর্তী আপেক্ষিক গতিকে বাধাদানকারী ঘর্ষণ বলের মান সর্বাধিক হবে। ধর্ষণ বলের এই মানকে সীমান্তিক মান বা সীমান্তিক ঘর্ষণ বলে।
যতক্ষণ পর্যন্ত ব্লকটি স্থির থাকে বা ব্লক ও টেবিলের মধ্যে কোনো আপেক্ষিক গতি না থাকে তখন বস্তুদ্বয়ের মধ্যে যে ঘর্ষণ কাজ করে তাকে স্থিতি ঘর্ষণ বলে। স্থিতি ঘর্ষণের মান শূন্য থেকে সীমান্তিক মান পর্যন্ত হতে পারে।
স্থিতি ঘর্ষণের সীমান্তিক মান fx, এবং অভিলম্বিক প্রতিক্রিয়া R হলে স্থিতি ঘর্ষণ গুণাঙ্ক হবে ,
যে কোনো দুটি তলের মধ্যবর্তী স্থিতি ঘর্ষণ গুণাঙ্কের মান সব সময় । এর চেয়ে ছোট হয়। মাত্রা ও একক : একই জাতীয় দুটি রাশির অনুপাত হওয়ায় ঘর্ষণ গুণাঙ্কের কোনো মাত্রা বা একক নেই।
দুটি অমসৃণ তলের মধ্যে যে স্থিতি ঘর্ষণ ক্রিয়া করে তা কতগুলো সূত্র মেনে চলে । এদেরকে স্থিতি ঘর্ষণের সূত্রাবলি বলা হয়।
১. ঘর্ষণ বল সর্বদা গতির বিরুদ্ধে ক্রিয়া করে।
২. স্থিতি ঘর্ষণ বলের সীমান্তিক মান অভিলম্বিক (Normal)
প্রতিক্রিয়ার সমানুপাতিক ।
৩. স্থিতি ঘর্ষণ বল স্পর্শতলের প্রকৃতির ওপর নির্ভর করে স্পর্শ তলের ক্ষেত্রফলের ওপর নয়।
Angle of Friction
সীমান্তিক ঘর্ষণের ক্ষেত্রে অভিলম্বিক প্রতিক্রিয়া R ও ঘর্ষণ বল f-কে সংযোজিত করে যে লব্ধি বল পাওয়া যায় তাকে লব্ধ প্রতিক্রিয়া বলে।
ব্যাখ্যা : ৪.৩০ চিত্রে সীমান্তিক ঘর্ষণ, j, ও অভিলম্বিক প্রতিক্রিয়া, R-কে সংযোজন করে লব্ধ প্রতিক্রিয়া S পাওয়া গেল এই লব্ধ প্রতিক্রিয়া S ও অভিলম্বিক প্রতিক্রিয়া R-এর মধ্যবর্তী কোণ হচ্ছে ঘর্ষণ কোণ (চিত্র ৪.৩০)।
Angle of Repose
যে কোনো তলের আনতি স্থিতি কোণ পর্যন্ত হলে এই তলের ওপর বস্তু স্থির থাকবে। আনতি স্থিতি কোণ অতিক্রম করে গেলে বস্তুতে গতি সঞ্চার হবে।
৪.৩১ চিত্রে A ব্লকটি OX আনত তলের ওপর বসানো আছে। অনুভূমিক রেখার সাথে OX তলের আনতি ইচ্ছামত পরিবর্তন করা যায়। ব্লকের ওজন W ও ঘর্ষণ বল J, । এখন OX তলের আনতি বাড়াতে বাড়াতে যখন আনতি হয় তখন A ব্লকটি গতিশীল হওয়ার উপক্রম হয়। এই সীমান্তিক অবস্থায় আমরা লিখতে পারি—
R = W cos এবং fs = W sin
Kinetic Friction
পরীক্ষা করে দেখা গেছে যে, চলমান অবস্থায় ঘর্ষণ বল বস্তুর স্থিতি ঘর্ষণ বলের সীমান্তিক মানের চেয়ে কম।
১. গতীয় ঘর্ষণ বল অভিলনিক প্রতিক্রিয়ার সমানুপাতিক। এখানে ঘর্ষণ বল সীমান্তিক ঘর্ষণ বলের চেয়ে কম।
২. গতীয় ঘর্ষণ বল স্পর্শতলের ক্ষেত্রফলের ওপর নির্ভর করে না, নির্ভর করে গায়ের প্রকৃতির ওপর। ৩. বেগ খুব বেশি না হলে গতীয় ঘর্ষণ বল তলদ্বয়ের বেগের ওপর নির্ভরশীল নয়।
সংজ্ঞা : কোন বস্তু যখন অপর একটি বস্তুর ওপর দিয়ে স্থির বেগে চলতে থাকে গতীয় ঘর্ষণ বল এবং অভিলম্বিক প্রতিক্রিয়ার অনুপাতকে গতীয় ধর্ষণ গুণাঙ্ক বলে।
গতীয় ঘর্ষণ বল fk এবং অভিলম্বিক প্রতিক্রিয়া R হলে, গতীয় ঘর্ষণাঙ্ক হবে,
m ভরের একটি বস্তুর উপর F অনুভূমিক বলের প্রয়োগে গতিশীল হয়। যদি fk গতীয় ঘর্ষণ বল বস্তুটির গতিতে বাধা সৃষ্টি করে তাহলে বস্তুটির ত্বরণ নিম্নোক্ত সমীকরণ থেকে পাওয়া যায়,
Rolling Friction
বস্তুটি যখন কোনো তলের ওপর দিয়ে গড়িয়ে যায় তখন বস্তুটির চাপে ভারবাহী তলটির খানিকটা অংশ অবনমিত হয়। ফলে পড়িয়ে চলা বস্তুর ঠিক সামনে ঐ তলের খানিকটা অংশ BA উঁচু হয়ে যায় (চিত্র : ৪.৩২)
বস্তুটি যতক্ষণ গড়িয়ে চলতে থাকে ততক্ষণ এরূপ উঁচু হয়ে ওঠা বাধাকে অতিক্রম করে যেতে হয় ফলে আবর্ত ঘর্ষণের উৎপত্তি হয়। বস্তুটি অপর বস্তুর ওপর দিয়ে গড়িয়ে চলার সময় যদি অভিলম্বিক প্রতিক্রিয়া R এবং আবর্ত ঘর্ষণ fr, হয় তাহলে, আবর্ত ঘর্ষণাঙ্ক,
আমাদের দৈনন্দিন অভিজ্ঞতা থেকেই আমরা দেখতে পাই যে, একটা বাক্সকে শুধু মেঝের ওপর দিয়ে টেনে নিতে যত কষ্ট হয় তার চেয়ে অনেক কম কষ্ট হবে যদি বাক্সের তলায় অনেকটা রোলার লাগিয়ে দেয়া যায়। কাজেই আমরা বলতে পারি, আবর্ত ঘর্ষণ গতীয় ঘর্ষণের চেয়ে অনেক কম।
যখন কোনো তরল পদার্থ বা বায়বীয় পদার্থের গতিপথে কোনো স্থির বস্তু রাখা হয় বা কোনো বস্তুকে তরল বা বায়বীয় পদার্থের মাঝ দিয়ে গতিশীল হতে হয় তখন উভয়ের মধ্যে ঘর্ষণ উৎপন্ন হয়। এই ধরনের ঘর্ষণকে প্রবাহী ঘর্ষণ বলে। সাধারণত জাহাজ পানিতে চলার সময়ে বা বৃষ্টির ফোঁটা বাতাসের মাঝ দিয়ে পড়ার সময়ে এই ধরনের ঘর্ষণের উৎপত্তি হয় ।
আমাদের দৈনন্দিন জীবনে ঘর্ষণ অত্যন্ত প্রয়োজনীয়। ঘর্ষণ না থাকলে আমরা হাঁটতে পারতাম না, পিছলে যেতাম। কাঠে পেরেক বা স্ক্রু আটকে থাকতো না, সম্ভব হতো না দড়িতে কোনো গিরো দেয়া। কোনো কিছু আমরা ধরে রাখতে পারতাম না। ফলে সহজেই বোঝা যায়, ঘর্ষণ না থাকলে আমাদের কতটা অসুবিধার সম্মুখীন হতে হতো।
ঘর্ষণের জন্য আমাদেরকে অসুবিধাও কম পোহাতে হয় না। যন্ত্র চলার সময় গতিশীল অংশগুলোর মধ্যে ঘর্ষণ ক্রিয়া করার ফলে ক্রমশ ক্ষয়প্রাপ্ত হয়। তাছাড়া যান্ত্রিক দক্ষতাও বেশ কমে যায়, আবার ধর্ষণের ফলে অনাবশ্যক তাপ উৎপাদনের জন্যও যন্ত্রের ক্ষতি হয়।
এসব অসুবিধা দূর করার জন্য যন্ত্রপাতির স্পর্শতলগুলোর মাঝে পিচ্ছিলকারী বা গ্রাফাইট ব্যবহার করে পিচ্ছিল রাখা হয়।
আরও দেখুন...